Question
If a + b + c = 5, a³ + b³ + c³ = 85 and abc =25, then
find the value of a² + b² + c² – ab –bc – caSolution
Given - a + b + c = 5 a³ + b³ + c³ = 85 abc =25 As we know that – a³ + b³ +c³ –3abc = (a+ b+ c) (a² + b² + c² -ab-bc-ca) 85 -3×25 = 5 (a² + b² + c² -ab-bc-ca) (85 -75)/5 = (a² + b² + c² -ab-bc-ca) (a² + b² + c² -ab-bc-ca) = 10/5 =2
√3598 × √(230 ) ÷ √102= ?
15% of 2400 + (√ 484 – √ 256) = ?
(13)2 - 3127 ÷ 59 = ? x 4
6269 + 0.25 × 444 + 0.8 × 200 = ? × 15
...(53 + 480 ÷ 4)% of 20 = ?% of 70
Find the simplified value of the following expression:
62 + 122 × 5 - {272 + 162 - 422}
(15 × 225) ÷ (45 × 5) + 480 = ? + 25% of 1240
√ [? x 11 + (√ 1296)] = 16
11 × 25 + 12 × 15 + 14 × 20 + 15 = ?