Question
Consider the following C++-like pseudo-code for a binary
tree traversal:   ```cpp   struct Node {     int data;     Node left;     Node right;   };   void trickyTraversal(Node root) {     if (root == nullptr) {       return;     }     if (root->left != nullptr) {       trickyTraversal(root->left);     }     std::cout data right != nullptr) {       trickyTraversal(root->right);     }   }   ```   Given the following binary tree:   ```      10      / \     5  15     / \  /    2  7 12   ```   What will be the output of `trickyTraversal(root)` where `root` points to the node with data `10`?ÂSolution
The `trickyTraversal` function is an Inorder Traversal.       It first recursively visits the left child.       Then it prints the current node's data.       Then it recursively visits the right child.     This is the definition of an Inorder Traversal.     For the given tree:     ```        10        / \       5  15       / \  /      2  7 12     ```     Inorder traversal: Left -> Root -> Right     1. `trickyTraversal(10)`       1.1. `trickyTraversal(5)`         1.1.1. `trickyTraversal(2)`           1.1.1.1. `trickyTraversal(nullptr)` -> return           1.1.1.2. Print `2`           1.1.1.3. `trickyTraversal(nullptr)` -> return         1.1.2. Print `5`         1.1.3. `trickyTraversal(7)`           1.1.3.1. `trickyTraversal(nullptr)` -> return           1.1.3.2. Print `7`           1.1.3.3. `trickyTraversal(nullptr)` -> return       1.2. Print `10`       1.3. `trickyTraversal(15)`         1.3.1. `trickyTraversal(12)`           1.3.1.1. `trickyTraversal(nullptr)` -> return           1.3.1.2. Print `12`           1.3.1.3. `trickyTraversal(nullptr)` -> return         1.3.2. Print `15`         1.3.3. `trickyTraversal(nullptr)` -> return     Output: `2 5 7 10 12 15`
300% of (3341 – 471) = ? × (√4225/195)
1404 ÷ 26 x 3 + 7 = ?2
2(1/3) + 2(5/6) – 1(1/2) = ? – 6(1/6)
35% of 240 – 6 2 = ? 2 – √256
16 × 35 + 119 + 23 × 17 = ? + 370
{(? × 15) + (? × 45)} – 120 = 360
721 +21 x 9 - 118 = ? + 82
If a³ - b³ = (a - b)(a² + ab + b²), find a³ - b³ when a = 10 and b = 4.
`(450 -: ?)/(2.5 xx 1.2)` = 250
(750 / 15 × 15 + 152 + 20% of 125) = ?3