Question
Natural Language Processing (NLP) In the context of
sentiment analysis, which of the following NLP techniques provides the most accurate classification of nuanced opinions?Solution
Transformer-based models like BERT (Bidirectional Encoder Representations from Transformers) are highly effective in sentiment analysis due to their ability to understand context and semantics in both directions of a sentence. Unlike traditional models, BERT processes the entire text bidirectionally, capturing subtle nuances, such as sarcasm, negations, or contextual modifiers, that significantly impact sentiment. For example, in a sentence like "The service was not bad," BERT accurately identifies the positive sentiment by considering the negation. Additionally, its pre-training on massive datasets and fine-tuning for specific tasks make it robust for domain-specific sentiment analysis, offering unparalleled accuracy compared to other NLP techniques. Why Other Options Are Incorrect:
- A) Tokenization and POS tagging provide foundational text processing but lack the depth for nuanced opinion analysis.
- B) Word2Vec embeddings capture word meanings but do not handle sentence-level context effectively.
- D) LDA is primarily used for topic modeling and is not well-suited for sentiment classification.
- E) N-gram models are limited by fixed context windows and fail to capture long-range dependencies in text.
рд╕рдореНрдмрдиреНрдз рддрддреНрдкреБрд░реБрд╖ рдореЗрдВ рдХрд┐рд╕ рдХрд╛рд░рдХ рдЪрд┐рд╣реНрди рдХрд╛ рд▓реЛрдк рд╣реЛрддрд╛ рд╣реИ?
┬атАШрдЕрдХреЗрд▓рд╛ рдЪрдирд╛ рднрд╛реЬ рдирд╣реАрдВ рдлреЛрдбреНрддрд╛' рдХрд╛ рдЕрд░реНрде рд╣реИ
рддрд╛рд▓рд╛ рд╢рдмреНрдж рдХреМрди-рд╕рд╛ рд▓рд┐рдВрдЧ рд╣реИ ?
'рдЖрдирдиреНрдж' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рд╣реИ
рд▓рдВрдмреЛрджрд░ рдХреМрди-рд╕рд╛ рд╢рдмреНрдж рд╣реИред
рдирд┐рдореНрди рдореЗрдВ рдХреМрди рд╕рд╣реА рд╣реИ ?
' рдкрд░рд╛рдЬрдп ' рдХрд┐рд╕рдХрд╛ рд╡рд┐рд▓реЛрдо рд╢рдмреНрдж рд╣реИ ?
' рд╢реНрд╡реЗрддрд╛ рдмрд╣реБрдд рдзреАрд░реЗ рджреМрдбрд╝рддреА рд╣реИред ' рд╡рд╛рдХреНрдп рдореЗрдВ рдХреНрд░рд┐рдпрд╛ рд╡рд┐рд╢реЗрд╖рдг ...
тАШ рдорд▓реНрд╣рд╛рд░ рдЕрд▓рд╛рдкрдирд╛тАШ рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рдЙрдЪрд┐рдд рдЕрд░реНрде рдЪреБрдирд┐рдП ?
рдЗрдирдореЗрдВ рд╕реЗ рдХреМрди-рд╕реА рдзреНрд╡рдирд┐ рдЕрдиреНрддрдГрд╕реНрде рдирд╣реАрдВ рд╣реИ?