Question
Which of the following methods is most appropriate for
forecasting future values in time series data with a consistent trend and seasonality?Solution
Exponential smoothing is one of the most effective forecasting methods when dealing with time series data that exhibits both trend and seasonality. It assigns exponentially decreasing weights to past observations, which means that more recent data points have a greater influence on the forecast. The method adapts well to data with trends and seasonal variations because it accounts for these patterns in its calculation. Variants such as Holt-Winters exponential smoothing are used specifically when the data shows seasonality and trend components, making it suitable for time series forecasting where such features are evident. Why Other Options Are Incorrect: тАв A: Moving averages are useful for smoothing time series data but do not explicitly handle trends and seasonality as well as exponential smoothing. тАв B: ARIMA (AutoRegressive Integrated Moving Average) is a powerful method but is more complex and suitable for non-seasonal data or when seasonality is handled separately through seasonal ARIMA (SARIMA). тАв D: Random Forest is a machine learning model and is not typically used for forecasting time series data that shows clear seasonality and trend. тАв E: Linear regression is more suitable for predicting values based on independent variables, not for time series forecasting where autocorrelation and seasonality are crucial.
"рджрд┐рдирд╛рдиреНрдд рдерд╛, рдереЗ рджрд┐рдирдирд╛рде рдбреВрдмрддреЗ, рд╕рдзреЗрдиреБ рдЖрддреЗ рдЧреГрд╣ рдЧреНрд╡рд╛рд▓ рдмрд╛рд▓ рдереЗред рджрд┐...
'рдЙрд▓реНрд▓рдВрдШрди' рдХрд╛ рд╕рд╣реА рд╕рдВрдзрд┐-рд╡рд┐рдЪреНрдЫреЗрдж рд╣реИ:
рдЕрдиреЗрдХрд╛рд░реНрдердХ рд╢рдмреНрдж 'рдЕрдХреНрд╖рд░' рдХрд╛ рдЗрдирдореЗрдВ рд╕реЗ рдПрдХ рдЕрд░реНрде рдирд╣реАрдВ рд╣реИ, рд╡рд╣ рд╣реИ :
'рдкрд░реНрд╡рдд рдХреЗ рдкрд╛рд╕ рдХреА рднреВрдорд┐' рдХреЗ рд▓рд┐рдП рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╢рдмреНрдж я┐╜...
рд╢реБрджреНрдз рд╡рд░реНрддрдиреА рд╡рд╛рд▓рд╛ рд╢рдмреНрдж рд╣реИ-
рд╡рд╛рдХреНрдпреЛрдВ рдХреЗ рд░рд┐рдХреНрдд рд╕реНрдерд╛рдиреЛрдВ рдХреА рдкреВрд░реНрддрд┐ рдХреЗ рд▓рд┐рдП рджрд┐рдП рдЧрдП рдЪрд╛рд░ рдЪрд╛рд░ рд╡я┐╜...
тАШрдЖрдЧтАЩ рдХрд╛ рддрддреНрд╕рдо рд╣реЛрдЧрд╛ -
рджрд┐рдП рдЧрдП рд╢рдмреНрдж рдХреЗ рд╡рд┐рд▓реЛрдо рдХреЗ рд▓рд┐рдП рдЪрд╛рд░-рдЪрд╛рд░ рд╡рд┐рдХрд▓реНрдк рджрд┐рдП рдЧрдП рд╣реИрдВред рдЙрдЪрд┐рдд ...
рдкреНрд░рд╢рд╛рд╕рди/рд╡рд┐рдзрд┐ рдХреЗ рд╕рдВрджрд░реНрдн рдореЗрдВ 'Outlay' рд╢рдмреНрдж рдХрд╛ рдЙрдкрдпреБрдХреНрдд рд╣рд┐рдВрджреА рдкя┐╜...
рд╣реИ рез/ рдпреЛрдЧ реи/┬а рдореЗрдВ рей/ рдПрдХ рдХрд▓рд╛ рек/ рд╡рд╛рд╕реНрддрд╡ рел/ рд╡рд╛рдХреНрдп рд╕рдВрд░рдЪрдирд╛ рдХрд╛ рд╕рд╣реА рдХреНрд░я┐╜...