Question
Which of the following forecasting methods would be most
suitable for a time series that exhibits both a long-term trend and seasonality?Solution
Holt-Winters Exponential Smoothing is a forecasting method that is specifically designed for time series data that exhibits both trend and seasonality. It extends the simple exponential smoothing method by incorporating components for trend and seasonality. The model uses weighted averages of past data points and adjusts for both the long-term trend and seasonal variations. It is particularly useful in situations where data has both trend (a long-term increase or decrease) and seasonality (periodic fluctuations). This method is ideal for situations where both of these components need to be accounted for in forecasting future values. Why Other Options Are Incorrect: тАв A: Simple moving averages smooth out short-term fluctuations but do not account for trend or seasonality, making it unsuitable for data with these characteristics. тАв B: Exponential smoothing (without trend or seasonality components) works best for data with no clear trend or seasonality, which makes it less appropriate for data exhibiting both. тАв C: ARIMA (AutoRegressive Integrated Moving Average) can handle trends but does not explicitly model seasonality unless specifically adapted (e.g., SARIMA), so it is less ideal than Holt-Winters for seasonal data. тАв E: Linear regression is used for modeling relationships between variables and can model a trend, but it does not account for seasonality or provide a smoothing mechanism, making it less appropriate for time series forecasting.
"рджрд┐рдирд╛рдиреНрдд рдерд╛, рдереЗ рджрд┐рдирдирд╛рде рдбреВрдмрддреЗ, рд╕рдзреЗрдиреБ рдЖрддреЗ рдЧреГрд╣ рдЧреНрд╡рд╛рд▓ рдмрд╛рд▓ рдереЗред рджрд┐...
'рдЙрд▓реНрд▓рдВрдШрди' рдХрд╛ рд╕рд╣реА рд╕рдВрдзрд┐-рд╡рд┐рдЪреНрдЫреЗрдж рд╣реИ:
рдЕрдиреЗрдХрд╛рд░реНрдердХ рд╢рдмреНрдж 'рдЕрдХреНрд╖рд░' рдХрд╛ рдЗрдирдореЗрдВ рд╕реЗ рдПрдХ рдЕрд░реНрде рдирд╣реАрдВ рд╣реИ, рд╡рд╣ рд╣реИ :
'рдкрд░реНрд╡рдд рдХреЗ рдкрд╛рд╕ рдХреА рднреВрдорд┐' рдХреЗ рд▓рд┐рдП рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╢рдмреНрдж я┐╜...
рд╢реБрджреНрдз рд╡рд░реНрддрдиреА рд╡рд╛рд▓рд╛ рд╢рдмреНрдж рд╣реИ-
рд╡рд╛рдХреНрдпреЛрдВ рдХреЗ рд░рд┐рдХреНрдд рд╕реНрдерд╛рдиреЛрдВ рдХреА рдкреВрд░реНрддрд┐ рдХреЗ рд▓рд┐рдП рджрд┐рдП рдЧрдП рдЪрд╛рд░ рдЪрд╛рд░ рд╡я┐╜...
тАШрдЖрдЧтАЩ рдХрд╛ рддрддреНрд╕рдо рд╣реЛрдЧрд╛ -
рджрд┐рдП рдЧрдП рд╢рдмреНрдж рдХреЗ рд╡рд┐рд▓реЛрдо рдХреЗ рд▓рд┐рдП рдЪрд╛рд░-рдЪрд╛рд░ рд╡рд┐рдХрд▓реНрдк рджрд┐рдП рдЧрдП рд╣реИрдВред рдЙрдЪрд┐рдд ...
рдкреНрд░рд╢рд╛рд╕рди/рд╡рд┐рдзрд┐ рдХреЗ рд╕рдВрджрд░реНрдн рдореЗрдВ 'Outlay' рд╢рдмреНрдж рдХрд╛ рдЙрдкрдпреБрдХреНрдд рд╣рд┐рдВрджреА рдкя┐╜...
рд╣реИ рез/ рдпреЛрдЧ реи/┬а рдореЗрдВ рей/ рдПрдХ рдХрд▓рд╛ рек/ рд╡рд╛рд╕реНрддрд╡ рел/ рд╡рд╛рдХреНрдп рд╕рдВрд░рдЪрдирд╛ рдХрд╛ рд╕рд╣реА рдХреНрд░я┐╜...