Question
A time series dataset shows monthly sales data for a
retail store over the last three years. After performing decomposition, you observe that the residual component exhibits no clear pattern and appears to be randomly distributed. What does this imply about the quality of the decomposition?Solution
In time series analysis, the decomposition process breaks down the data into three components: trend, seasonality, and residuals. The residuals represent the random noise left after removing the trend and seasonality components. Ideally, the residuals should not show any patterns or trends, indicating that the model has captured all systematic information from the data. If the residuals are random, it suggests that the model has successfully accounted for both trend and seasonality. Hence, the fact that the residuals are randomly distributed indicates that the decomposition process is likely correct. Why Other Options Are Incorrect: тАв A: Overfitting refers to a model that captures too much noise in the data, not leaving random residuals. Overfitting typically results in residuals that show patterns, not randomness. тАв C: Residuals are an essential part of decomposition and should not be removed. They represent the noise or error in the model and are necessary for validating the model's fit. тАв D: The residuals should not reflect seasonality or trend, as these components are already removed during the decomposition process. Any structure in the residuals would indicate that the decomposition model has not fully captured the data's underlying patterns. тАв E: A model showing random residuals indicates that it has captured the key patterns in the data, and there is no immediate need to test other models.
тАЬ рдХрд╡рд┐ рдкрд╣рд▓реЗ рд╡реНрд░рдЬрднрд╛рд╖рд╛ рдХреА рдХрд╡рд┐рддрд╛рдПрдБ рд▓рд┐рдЦрд╛ рдХрд░рддреЗ рдереЗ рдЬрд┐рдирдХрд╛ рд╕рдВрдЧреНрд░рд╣ ' я┐╜...
рдХрдкрд┐ + рдИрд╢ рдХреА рд╕рдВрдзрд┐ рд╕реЗ рдХреМрди-рд╕рд╛ рд╢рдмреНрдж рдмрдиреЗрдЧрд╛ ?
рд░рд┐рдХреНрдд рд╕реНрдерд╛рди рдХреА рдкреВрд░реНрддрд┐ рдХреАрдЬрд┐рдпреЗ ?
рдорд╣рд╛рддреНрдорд╛ рдЧрд╛рдБрдзреА рдиреЗ рд▓реЛрдЧреЛ рдХя┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди-рд╕рд╛ рд╡рд┐рдХрд▓реНрдк рддреБрд▓рдирд╛ рд╡рд╛рдЪрдХ рд╕рдВрдмрдВрдзрдмреЛрдзрдХ рдЕрд╡реНя┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╢рдмреНрдж 'рдкрддреНрдерд░' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рдирд╣реАрдВ рд╣реИ?
рдирд╛рдХ рд░рдЧрдбрд╝рдирд╛ рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рдЕрд░реНрде рд╣реИрдВ
┬арджреВрд╕рд░реЛрдВ рдХреЗ рд╕реНрдерд╛рди рдкрд░ рдХрд╛рд░реНрдп рдХрд░рдирд╛' рдХреЗ рд▓рд┐рдП рдПрдХ рд╢рдмреНрдж рд╣реИ┬а
'рд╕реБрд▓рдн' рдХрд╛ рдЙрдкрдпреБрдХреНрдд рд╡рд┐рдкрд░реАрддрд╛рд░реНрдердХ рд╢рдмреНрдж рд╣реИ
'рдХрд░реНрдкрдЯ' рдХрд╛ рддрджреНрднрд╡ рд░реВрдк рд╣реИ -
' рдЧрдЬрд╛рдирди ' рдореЗрдВ рдХреМрди-рд╕рд╛ рд╕рдорд╛рд╕ рд╣реИ ?