Question
When using descriptive statistics, which measure is best
for understanding data variability?Solution
Standard deviation is the most informative measure of data variability because it quantifies the average deviation of each data point from the mean. By providing insight into the spread of data values around the mean, standard deviation helps analysts understand how clustered or dispersed the data is, which is crucial for interpreting patterns and making comparisons between datasets. Standard deviation is particularly valuable in assessing consistency and identifying outliers, making it essential in descriptive statistical analysis. The other options are incorrect because: тАв Option 1 (mean) is a central tendency measure, not a measure of variability. тАв Option 2 (median) indicates the central value but not data spread. тАв Option 3 (mode) is useful for frequency analysis but not for assessing variability. тАв Option 5 (range) provides a simple variability measure but lacks the detail of standard deviation, as it only considers extremes.
рд╢реБрджреНрдз рд╢рдмреНрдж рд╣реИ
'рд╕рдореНрдореБрдЦ' рдХрд╛ рд╡рд┐рдкрд░реАрддрд╛рд░реНрдердХ рд╣реИ
рдорд╛рддреНрд░рд╛рдПрдБ рдХрд┐рддрдиреЗ рдкреНрд░рдХрд╛рд░ рдХреЗ рд╣реЛрддреЗ рд╣реИ ?
┬арддрддреНрд╕рдо рд╢рдмреНрдж рд╣реИ
рдХрд┐рд╕ рд╡рд╛рдХреНрдпреЗ рдореЗрдВ рднрд╡рд╡рд╛рдЪреНрдп рдХрд╛ рдкреНрд░рдпреЛрдЧ рд╣реБрдЖ рд╣реИ ?
'рдзрдиреНрдпрд╡рд╛рдж' рд╢рдмреНрдж рдореЗрдВ рдХреМрди-рд╕рд╛ рдЙрдкрд╕рд░реНрдЧ рд╣реИ?
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рд╕реНрддреНрд░реА рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рдирд╣реАрдВ рд╣реИ :
рдЕрдзреЛрд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди-рд╕рд╛ рдпреБрдЧреНрдо рд╡рд┐рд╢реЗрд╖рдг рдирд╣реАрдВ рд╣реИрдВ?
' рдЬрд▓реЗ рдкрд░ рдирдордХ рдЫрд┐рдбрд╝рдХрдирд╛ ' рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рд╕рдЯреАрдХ рдЕрд░реНрде рд╣реИ :
рдХреМрди-рд╕рд╛ рд╢рдмреНрдж рд╢реБрджреНрдз рдирд╣реАрдВ рд╣реИ