Given that: θ = 30֯ τ = 12 × 10-26 Nm E = 103 N/C Dipole moment P needs to be calculated. It is known that torque is given by τ = PE sin θ => P = τ/ E sin θ => P = (12 × 10-26)/( 103 × sin 30 °) = 24 × 10-29 Cm
I. 9/(4 )p + 7/8p = 21/12
II. 7/5p = 9/10q + 1/4
The equation x2 – px – 60 = 0, has two roots ‘a’ and ‘b’ such that (a – b) = 17 and p > 0. If a series starts with ‘p’ such...
I. 96x² + 52x - 63 = 0
II. 77y² + 155y + 72 = 0
(i) x² – 3x – 40 = 0
(ii) y² + 11y + 30 = 0
I. 2x2 - 9 x + 9 = 0
II. 2y2 - 7 y + 3 = 0
I). p2 = 81
II). q2 - 9q + 14 = 0
I. 3x2 – 16x + 21 = 0
II. y2 – 13y + 42 = 0
I. 2x² - 7x + 3 = 0
II. 8y² - 14y + 5 = 0
I. 2x2– 5x – 63 = 0
II. 2y2– 7y – 72 = 0
I: 2x² - 8x + 6 = 0
II: 3y² - 12y + 9 = 0