Start learning 50% faster. Sign in now
In the code language, each letter is represented by the sum of the position of that letter in the alphabet with the position of the corresponding letter in the word. For example, for KAMAL: • K (11) → 1 + 1 = 2 • A (1) → 1 + 1 = 2 • M (13) → 1 + 3 = 4 • A (1) → 1 + 1 = 2 • L (12) → 1 + 2 = 3 Thus, KAMAL → 21413, and the same pattern applies to MAHAL: • M (13) → 1 + 3 = 4 • A (1) → 1 + 1 = 2 • H (8) → 1 + 8 = 9 • A (1) → 1 + 1 = 2 • L (12) → 1 + 2 = 3 Hence, MAHAL → 41813.
Solve for x in the interval [0, 2π]: 2 sin²x + 3 sinx - 2 = 0.
If sinAo = (√3/2), then find the value of (sin245o + cos230o) × A ÷ 5 given that 0 < A < 90...
If x tan 60° + cos 45° = sec 45° then the value of x2 + 1 is
(1+sint)/(4-4sint)-(1-sint)/(4+4sint) =?
If 2cosA + secA = 2√2 , 0° < < 90°, then the value of 2(sec 4 A + cosec 4 A) is:
Find the value of: (Sin2 60 ° X cos 30 ° X sec 60°)/tan 30°
If 2sin y + cos y = √3 sin y, then find the value of tan y
The minimum value of 12 sin θ + 5 cosθ is
Calculate the maximum and minimum value of (8cosA + 15sinA + 15), if 'q' lies in the first quadrant.