Question
What is an integral component of any Quantum Technology
Mission? India is getting serious about building her own technology base and the upcoming National Quantum Mission could be a game changer in multiple sectors, from defence, energy, and environment to healthcare and civil applications. Any technology is first devised and then thrives on material innovation, and quantum technology is no exception. For India, investments in quantum materials and devices promise far more dividends than meets the eye . The process can generate a cadre of highly skilled workforce. As India gears to become the world’s third-largest economy by 2027, a strongly networked material infrastructure in the country will be crucial. It will cater to not just quantum technologies but also other major scientific megaprojects ranging from the semiconductor mission to neutrino observatory and gravitational wave detection. The infrastructure will play a key role in building self-reliance in the energy and electronics industries. Quantum materials are a class of matter or systems that allow us to exploit some of the unique properties of quantum physics and accomplish tasks that classical technology is incapable of. The concept of “quantum materials” was originally introduced to identify some of the exotic quantum systems, including unconventional superconductors, heavy-fermion systems, and multifunctional oxides. It has now morphed into a powerful unifying concept across diverse fields of science and engineering, including solid-state physics, cold atoms (atoms cooled to close to absolute zero whereby their quantum mechanical properties are unveiled), materials science, and quantum computing. R&D in quantum materials today embraces traditional semiconductors, superconductors, and non-linear optical crystals directly relevant to computing, communication, and sensing. It also encompasses materials built on the complex interaction between charge and atoms, those that are products of the uniqueness in the geometric phase of the quantum wave functions, as well as materials that are a creation of the more “hidden” properties of quantum physics, such as quantum entanglement. Research on new architectures to incorporate quantum materials into functional units has progressed simultaneously, leading to the concept of “quantum devices”. New paradigms of ultrafast transistors and optoelectronics components as well as non-volatile memory and sensing devices are becoming enabling vehicles for quantum applications. A strong emphasis on quantum materials and devices is an integral component of any quantum technology mission. Upstream in the innovation pipeline, materials’ experts play important roles in developing new or upgrading current methods for precision synthesis, scalable yield, and stable performance. Research will be required to develop low-loss materials for superconducting quantum electronics that preserve quantum information over a long period, novel semiconductor nanostructures for the high-brightness source of entangled photons, and much more. The impact of much of the research cuts across multiple verticals of quantum technologies, and this necessitates dedicated and centralized material/device infrastructures. This will allow streamlining the material and device requirements for the core quantum technology verticals of the mission — building infrastructure for new materials and devices with in-house R&D, synergizing the diverse and geographically distributed material workforce in India to achieve mission deliverables, and ensuring efficient resource utilization as well as minimizing redundancy and duplication. The quantum materials and devices component of the National Quantum Mission will bring innovation in the field under a common umbrella. ÂSolution
As mentioned in the passage, a strong emphasis on materials and devices is an integral component.Â
Four letter-clusters have been given, out of which three are alike in some manner and one is different. Select the letter-cluster that is different.
Three out of the following four words are similar in meaning. Find the word that is different from the rest.
Odd one out
Three of the following four options are alike in a certain way based on the Alphabetical series. Which one among the following doesn’t belong to the g...
Three of the following four letter-clusters are alike in a certain way and one is different. Pick the odd one out.
Four number-pairs have been given, out of which three are alike in some manner and one is different. Select the number pair that is different.
Find the odd one out from the following options.Â
Find the odd one out from the following options.Â
Select the option in which the letters are not related in the same way.
Three of the following four are like in a certain way and one is different. Pick the odd one out.